
1/19

Design of a Molten Chloride Fast Spectrum
Reactor
Or: How I Learned To Stop Worrying And Love Sodium Chloride

Louis Gregg

Grenoble INP & UC Berkeley

September 4, 2018



2/19

Background & Study Goals

Is the operation of an MCFR practical in the B&B mode?
Previous work has shown:

• Chloride salts fuel, of composition (NaCl + [FP]Clx) - [Actinides]Cl3
• U-Pu cycle, fed with Natural Uranium (or DU) at equilibrium.

The minimum dimensions for a 1-to-1 height to diameter ratio, perfectly cylindrical core were
determined, as below.

Figure 1: Cores critical at equilibrium from [Michael Martin, 2017]. The core specifications adopted in this study are
highlighted in red.

• Na-K-F salts and Li-F salts have been excluded.

• Th-232/U-233 cycle excluded due to poor breeding characteristics in the fast spectrum.
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Core Composition in B&B MSRs

FIMA =
Fτ

Fτ + Nact
(1)

where
• F is the fission rate density of the equilibrium fuel composition in cm−3s−1.
• τ is the average residence time of fuel in the reactor in seconds. This can also be interpreted as the
time required to completely re-fill the reactor with feed material.

• Nact is the number density of actinides in the equilibrium fuel composition.

Figure 2: keff as a function of burnup-years for two enrichments of feed material for the steel-reflected MCFR simulated
in Michael Martin [2017].
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Burnup Code Strategy

Figure 3: A periodic table in which the elements are grouped according to the rate at which they were removed from the
fuel material [car].

In the modified Serpent code, the different color groups above were removed from the fuel with different time
constants [Aufiero et al., 2013].
• Yellow elements (gases and heavy metals) were removed from the fuel and in-core half life of 30 minutes.
• Green elements (FPs and actinides) were removed with a variable time constant and replaced with natural Uranium -
this determines the discharge burrnup in FIMA.

• White elements were not removed.
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Reactor Geometry

Figure 4: Radial (left) and axial (right) cross sections of Reactor Geometry A from [Michael Martin, 2017].

Figure 5: Radial (left) and axial (right) cross sections of Reactor Geometry B, conceived and simulated in this work.
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Radial Reflector Study

The size and material composition of the reflector was varied and the change in leakage, keff and other
parameters was observed.

Figure 6: Criticality as a function of reflector thickness in geometry B.

A 20 cm steel reflector was chosen for further evaluation based on a 95%-of-keff,max criterion. Pb-208
reflectors have shown optimal reflection characteristics in other studies, but lead was discarded due to
potential operational issues.
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Minimum Core Volume & Reflector Thickness
To observe the effect of reflector thickness, keff was plotted as a function of core radius and reflector
thickness for the optimum feed/removal rate found in this study.

• A natural lead lead reflector allows for smaller core volumes of radius∼ 180 cm.

• The reflection effect using natural lead saturates at∼ 80 cm.

• The reflection effect using steel saturates at∼ 20 cm.
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Radiation Damage Calculation Method

A DPA estimation approach using 100-group displacement energy cross section data from the SPECTER
code documentation (produced by the DISC code) was adopted. Displacement Energy (ED) also obtained
from the SPECTER documentation [Greenwood and Smither, 1985] [Qvist, 2014].

DPA s−1 =

Nelements∑
j=1

(
0.8

2ED,j
∗

Nj

Ntot
∗

100∑
i=1

σi,jϕi

)
(2)

Figure 7: Neutron energy spectra and histogram of damage-cross section data for HT9.
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DPA Model Validation
Table 1: Various DPA-per-fast-fluence results for validation of the DPA calculation method.

Source ϕ>0.1 MeVt [n cm−2] DPA DPA/ϕt [DPA 10−22 n−1 ] Material Method
This Study 5.39×1023 200 3.71 HT9 SPECTER

Zhang et al. [2017] 1022 4.0 4.0 HT9 SPECTER
Sencer et al. [2009] 3.89×1023 ∼ 155 4.1 - 4.5 HT9 Experiment

Huang [1992] 3.6×1023 180 5 HT9 Experiment
Greenwood and Kellogg [1992] 1.00×1023 43 4.30 Iron Experiment

Figure 8: Neutron energy spectrum in the MCFR core. Histogram of damage-cross section data for HT9, produced using
the SPECTER code documentation [Greenwood and Smither, 1985]. Seed-region SFR spectrum and SFR DPA cross
section data provided by the authors of Zhang et al. [2017].

DPA-per-fluence ratios obtained in this study are in general agreement with those in the literature, although
they may have been slightly underestimated in this study.
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DPA Lifetime Estimation
And annular mesh was superimposed over reactor components in order to calculate the peak radiation
damage rate in DPA / year using a grid-size of 1 cm. The minimum neutron mfp in the material was∼
2.44 cm.
Radiation damage would be most severe in the HAZ of welds in any component, so the lifetime estimates
are very approximate.

Figure 9: Radiation damage rate as a function of r and z position in the 20 cm HT9 reflector.
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DPA Lifetime Results

Figure 10: Radial cross sections of the power profile before and after the plena heights were reduced to 5 cm.

Component Peak DPA/year z [cm] r [cm] Lifetime [years]
Reflector 51 16.5 170.5 4

Upper Steel Internals 67 173.5 1.5 3
Lower Steel Internals 77 -179.5 0.5 3
Radial Reactor Vessel 9 13.5 210.5 24
Upper Reactor Vessel 18 196.5 6.5 11
Lower Reactor Vessel 24 -195.5 0.5 9

Table 2: Component lifetimes with plena heights reduced to 5 cm, using a 208 DPA limit.
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Minimum Core Volume & Discharge Burnup

Figure 11: Equilibrium keff for Various Core Radii and Discharge Burnups. Criticality (keff = 1) indicated by the
semi-transparent red plane.
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Reactor Safety

αTemp = αDoppler + αDilation =

(
dk
dT

)
Doppler

+

(
dk
dρ

dρ
dT

)
Dilation

(3)

Figure 12: The temperature reactivity coefficient for the equilibrium fuel compositions.
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Equilibrium Composition & Core Volume Results

keff FIMA τ [years] rcore [cm] αtemp [pcm/K] βeff [pcm]
Max keff 1.0766± 0.0003 0.3914 13.6381 300 -3.7± 0.2 349.216± 1.30

Min FIMA (keff >1) 1.0000± 0.0003 0.1702 4.40 280 -4.3± 0.2 368.053± 1.51
Max FIMA (keff >1) 1.0124± 0.0003 0.6226 35.00 300 -2.8± 0.2 334.467± 1.37
Min Radius
(keff >1, FIMA= min)

1.0032± 0.0003 0.3702 13.64 200 -5.9± 0.2 348.626± 1.35

Min Radius
(keff >1, FIMA= max)

1.0027± 0.0003 0.4614 19.88 200 -5.7± 0.2 359.578± 1.33

Min αtemp

(keff >1)
1.0121± 0.0003 0.2925 9.36 220 -6.1± 0.2 359.062± 1.41

Max αtemp

(keff >1)
1.0124± 0.0003 0.6226 35.00 300 -2.8± 0.2 334.467± 1.37

Table 3: Extrema of the critical keff surface in figure 11 and the αtemp surface in figure 12.

• The minimum core radius was found to be 200 cm, corresponding to a total salt volume of 64.79 m3.
Burnups of between 37% and 46% were achievable for this volume of salt.

• αTemp values ranged from -6.1 to -2.8 pcm/K for all critical & supercritical configurations.

• A general trend of increasing αTemp with core radius and burnup was observed.
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Results & Conclusions
Radiation Damage Constraints

• The upper and lower steel internals were found to have lifetimes of approximately 3 years. This
represents the greatest standing design challenge identified in this study.

• Possible approaches to the radiation damage issue is the use of sacraficial material on the core-facing
surface of components OR the qualification of better materials.

• TerraPower aims to qualify steels up to 500 DPA under heavy ion bombardment. However, neutron
irradiation studies are still necessary [Hackett and Povirk, 2012] [Hejzlar et al., 2013].

Minimum Core Volume

• The minimum active core volume of∼ 50.3 m3 with a total salt volume of∼64.79 m3.

• Assuming a power density of 300 W cm−3, the corresponding power of 15.08 GWth is probably
economically infeasible.

• A lead reflector highly enriched in Pb-208 could allow this volume to be reduced while the delaying
and minimizing power spike produced in reactor transient scenarios [Michael Martin, 2017]
[Kulikov G.G. and E.G., 2018].

The large core volume and fast fluence are the largest outstanding design challenges.
Pumps & heat exchangers should be placed in the downcomer regions (as in the MSFR) to shield
these components from the core.
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